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Abstract— Laminar heat transfer in the entrance region of a circular duct and parallel plates is presented.
The velocity profile is fully developed and the temperature is assumed to be uniform at upstream infinity.
The finite difference equation for the energy equation, accounting for axial conduction, was solved by ADI
and QUICK methods and the results extrapolated to zero mesh size with extended Richardson extra-
polation. The local Nusselt number, incremental heat transfer number and thermal entrance length are
presented for Pe between 1 and 1000; and for constant wall temperature and constant wall heat flux
boundary conditions. Accurate engineering correlations for the Péclet number effect on these quantities
were also obtained.

1. INTRODUCTION

THE ANaLYSIS of heat transfer in the entrance region
in ducts has been widely considered, and an extensive
compilation of such solutions is provided by Shah and
London [1]. In most of these studies, it was assumed
that the velocity and temperature distributions at the
entrance to the passage are uniform and the axial
diffusion of both momentum and heat is negligible.
In fact, if the pressure gradients and heat transfer
rates were required near the entrance region, realistic
boundary conditions of uniform flow far upstream
must be used. The effect of the entrance region is to
increase the pressure drop and the heat transfer rate.
The additional pressure drop is caused by the momen-
tum change and the accumulated increment in wall
shear between developing flow and developed flow.
This increment in the pressure drop over and above the
fully developed value is designated as the incremental
pressure drop number X and the increment in the heat
transfer rate as the increment heat transfer number
N. Accurate knowledge of K and N for ducts is of
considerable practical as well as theoretical interest,
especially the fully developed flow values, K{o0),
Ny(oo) and Ny(oo). The effect of axial diffusion on
fluid flow and heat transfer is negligible only at very
high Reynolds and Péclet numbers, because of the
rapid change in axial velocity and temperature gradi-
ents near the entrance. At low Re and Pe, Kis a strong
function of Re and Ny and Ny, are strong functions of
Pe.

This paper presents the results of a numerical study
of the developed flow, laminar forced convection in
the entrance region of a circular duct and parallel
plates. The flow is fully developed and the temperature
is assumed to be uniform at upstream infinity. Both
constant axial wall temperature and constant and
equal wall heat flux conditions along the ducts are

studied. In most previous numerical solutions, the
approximations of various parameters, such as the
incremental pressure drop number K(o0) and the
incremental heat transfer number N(o0), deteriorate
at the end of the hydrodynamic or thermal entrance.
In the present work, discretization error is reduced by
extrapolating three mesh sizes to zero mesh size using
the extended Richardson extrapolation. In addition,
the QUICK scheme, which is well suited to the prob-
lem, is used with theoretically motivated stretched
coordinates to improve accuracy and efficiency.
The numerical results obtained are in excellent agree-
ment with previous solutions, Nguyen and Maclaine-
cross [2, 3] and Nguyen [4]. The local Nusselt number,
incremental heat transfer number and thermal
entrance length are presented for Pe ranging from 1
to 1000. Correlation equations are also given for all
of the quantities considered.

2. THE EQUATIONS AND THEIR SOLUTION

This paper is concerned with the laminar heat trans-
fer of a Newtonian constant property fluid at the
entrance region of a circular duct and parallel plates
of infinite extent. Viscous dissipation is neglected. The
velocity profile is fully developed and the temperature
profile is uniform at upstream infinity. The wall in
the upstream region {x < 0) is assumed to be either
insulated or at constant temperature. In the down-
stream region (x > 0) the wall is subject to the bound-
ary condition of uniform wall temperature or uniform
wall heat flux.

The dimensionless energy equation for steady lami-
nar flow in a circular duct is given by

JO_L(0 2w 20y
ax Pe\or T =D or Tax? M
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NOMENCLATURE
D, hydraulic diameter ¥ dimensionless coordinate normal to the
L}  thermal entrance length plates.
n number of interior mesh points
N incremental heat transfer number
N(oo) fully developed incremental heat

transfer number
Nu Nusselt number
Pe Péclet number
Pr Prandtl number
v dimensionless radial coordinate
R radius of circular duct
Re Reynolds number, D, U, /v
T temperature
T. wall temperature
T, upstream temperature

u dimensionless axial velocity

U, upstream velocity

X dimensionless axial coordinate

xE dimensionless axial coordinate for the
thermal problem, x/2Pe

X, dimensionless transformed axial
coordinate

Greek symbols

A thermal diffusivity

At time step

& convergence factor

0 dimensionless temperature

v kinetic viscosity.

Subscripts

be thermal boundary condition

H constant heat flux boundary condition

m mean

t transformed

T constant temperature boundary
condition

X local

4 free stream value.

in which 0 = (T—T,)/(T,—T,), Pe=RePr, Re =
U,D,/v and Pr = v/x. Here R, v and o denote re-
spectively the radius of the circular duct, the kinetic
viscosity and the thermal diffusivity.

For parallel plates, the energy equation is as

follows :
020
L2 2

U — =
oy’

0 Pe

a0 1 (azo

ox?

The streamwise coordinate and partial differential
equations (1) and (2) were transformed both upstream
and downstream of the entrance using a function
related to the downstream decay [5]. The transformed
coordinate x, is dimensionless and —1 <x < 1. It
may be calculated from the dimensionless coordinate
x in equations (1) and (2) using
 (I—exp(— |x|/(0.089275Pe)))x

X,

Il (3)

The transformed coordinates give a more equal
change in dependent variables over each grid element
and points at downstream infinity. The number of
grid elements required for a given discretization error
is greatly reduced at the expense of slightly more com-
putation per grid element.

Finite difference equations were derived from the
transformed non-linear partial differential equations.
Quadratic upstream interpolation for convective kin-
ematics (QUICK) [6] was used for the convective
terms to give stability with a discretization error of the
order of the square of the mesh size. The alternating
direction implicit (ADI) iterative method was used to

solve the non-linear finite difference equations. Con-
vergence was measured by calculating

Lo =
= Y e 4
b 10 0k Z At @

where # is the number of interior mesh points, 0, i$
the maximum magnitude of 0 and At is the time step.
Iteration was repeated until g, were all less than 10~ ?
so that the error in solving the finite difference equa-
tions was negligible and independent of grid size.

The dimensionless groups used in the present work
are defined as follows:

the local Nusselt number

00 /
Nu, = <2> /(()W—()m) for circular duct (5)
Or jr—o

0\ |
Nu, = 2<ﬁy> (0, —0,) for parallel plates  (6)
Y Jye=0f

where 0,, is the fluid bulk mean temperature

the mean Nusselt number

1 R
Nu,, = J Nu,dx (N
X Jo
the incremental heat transfer number

th = (Num.bc _Nubc)x*- (8)

The suffix bc represents the associated thermal bound-
ary conditions (T or H) and Nu, is the Nusselt num-
ber for fully developed flow. The mean Nusselt num-
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ber Nu,, is obtained by the integral in equation (7)
for values of x up to x = oo. The fully developed
incremental heat transfer number N(co) is then taken
as the asymptotic value which Ny, calculated by equa-
tion (8), converges to four significant figures.

Discretization error is the difference between the
exact solution of the finite difference equations and
the exact solution of the consistent partial differential
equations. For the finite difference equations used
here this is of the order of the grid size squared. It
may be reduced to fourth order by extrapolation to
zero grid size of the finite difference equation solutions
for three different grid sizes. Each grid is solved with
the same parameters and boundary conditions. The
three grids chosen were 11 x 81, 21 x 161 and 41 x 321
mesh points in the r or y and x direction respectively
making each grid size half its predecessor. The fol-
lowing extrapolation formula was calculated from the
general expression in Maclaine-cross [5] :

(43— A1)—12(43~A42)

A= A3~ 53 ©)

where A3 is the value at the smallest grid size, etc.
It should be noted that the above formula is valid
only for grids formed by successive mesh doubling,
for numerical methods which are uniformly second-
order accurate, and for very tight iterative conver-
gence. Other details of the solution method are dis-
cussed elsewhere [7].

3. CIRCULAR DUCT

Equations (1) and (2) have been solved for the
following Pe values: 1, 2, 5, 10, 20, 50, 100, 200 and
1000. It should be emphasized that Re is based on the
hydraulic diameter D, = 2R.

3.1. Constant wall temperature results

For the case of negligible axial heat conduction, the
fully developed Nusselt number for a circular duct
with the constant wall temperature boundary con-
dition is 3.6568. However, when the effect of axial heat
conduction in the fluid is included, the fully developed
Nusselt number Nuy is a strong function of the Péclet
number for low Péclet number flows as shown in Table
1, where the results from the present numerical work

Table 1. Circular duct : fully developed Nuy
as a function of Pe for the initial and
boundary condition of Fig. 1(a)

Pe Present solution  Ref. [1]
1 4.0280 4.030
2 3.9226 3.925
5 3.7673 3.769
10 3.6973 3.697
20 3.6675 3.670
50 3.6586 3.660
100 3.6572 —
200 3.6569 —
1000 3.6568 3.6568
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and Shah and London [1] are listed. The present work
is seen to be in excellent agreement with the values
given in Shah and London.

For the cas¢ of a circular duct with boundary con-
ditions of Fig. 1(a), the extrapolated values of the
fully developed incremental heat transfer number
Nr(c0) and the dimensionless thermal entrance length
LY, defined by Nu, (L, 1) = 1.05Nuy, are given in
Table 2.

The following correlations can be used to approxi-
mate Ny(oo) in Table 2 with the error ranging from
0.35% at Pe = 100t04.89% at Pe = 5:

Ni(oo) = ~0.1577+2.5166/Pe, for 1< Pe<5
(10)

Nr(o0) = 0.00186+1.8024/Pe, for 5< Pe <20
(1
Ne(o0) = 0.03596+1.1523/Pe, for 20 < Pe < 100
(12)

Nir(w) = 0.04539+0.3515/Pe,
for 100 < Pe < 1000, (13)

Equations (14)-(16) correlate the values of L¥
given in Table 2 with the deviation ranging from 0.2%
at Pe=1104.1% at Pe=10

Lix = —0.003079+0.4663/Pe, for 1< Pe<S5
(14)
L%+ = 0.02020+0.3550/Pe, for 5< Pe<20
{15)

L%+ = 0.03258+0.1295/ Pe,
for 20 < Pe < 1000. (16)

Table 3 tabulates the extrapolated values of N;{o0)
and L} for all Pe for a circular duct with an adiabatic
wall upstream from the entrance (Fig. 1(b)). The fol-
lowing equations are proposed for Ny(o0) in Table 3
to cover the complete Pe range with the error ranging
from 0.08% at Pe = 100 to 3.8% at Pe = 5:

Nip(c0) = —0.03044+0.9061/Pe, for 1< Pe<5
1mn

Nr(ao) = 0.02667+0.6466/Pe, for 5< Pe <20
(18)
Ny(o0) = 0.04301+0.3472/Pe, for 20 < Pe < 100
19

Ny(oo) = 0.04539+0.07664/ Pe,
for 100 < Pe < 1000. (20)

For the thermal entrance length in Table 3, the fol-
lowing correlations are given to approximate L¥ ; to
within 4.3% :

LY+ = 0.000501+0.3829/Pe, for 1< Pe<5

@n
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F1G. 1. Initial and boundary conditions for the case of constant wall temperature.

L+ =0.02154402821/Pe, for 5< Pe<20

(22)
Lk = 0.03282+0.07852/ Pe,
for 20 < Pe < 1000. (23)

The values of Ni(oo) of 0.04596 and 0.04644 at
Pe = 1000 in the present study (uniform temperature
profile at upstream infinity) are about 8% and 6.9%
lower than the value (0.04990) given by the Graetz
solution (uniform temperature profile at entrance).
However, the thermal entrance lengths of 0.03330 and
0.03333 are very close to that from the Graetz solution
(0.03346).

Table 2. Circular duct: N;(oo) and L+
for the initial and boundary conditions of

Fig. 1(a)

Pe Ni(o0) Lix

1 2.3696 0.4643

2 1.0722 0.2273
5 0.3634 0.09193
10 0.1789 0.05352
20 0.09411 0.03940
50 0.05688 0.03437
100 0.04908 0.03357
200 0.04676 0.03337
1000 0.04596 0.03330

3.2. Constant wall heat flux results

In the case of constant wall heat flux, the axial heat
conduction within the fluid is constant and therefore
does not affect the Nusselt number. The fully
developed, asymptotic local Nusselt number in this
caseis 4.3636 and is independent of the Péclet number.
Table 4 presents the extrapolated local Nusselt num-
ber as a function of x* for the whole range of Pe
considered here. As seen from Fig. 2, which presents
graphically the results from Table 4, the Nu, y vs x*
curves have an inflection point at x* ~ 0.0077, i.e.
Nu, , increases with decreasing Pe. This phenomenon
has also been found by previous workers, e¢.g. Hen-
necke [8] and Hsu [9], for the case of uniform entrance

Table 3. Circular duct: Ny(co) and L ¢
for the initial and boundary conditions of

Fig. 1(b)
Pe Nr(o0) L+
t 0.8793 0.3843
2 0.4130 0.1894
5 0.1568 0.07865
10 0.08895 0.04768
20 0.06058 0.03702
50 0.04910 0.03375
100 0.04712 0.03340
200 0.04661 0.03335
1000

0.04644

0.03333
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Table 4. Circular duct: Nu,y as a function of x* and Pe
N (%
x* Pe =1 2 5 10 20 50 100 1000
0 7.1240 7.4735 8.5176 10.2507 13.2274 19.4221 25.3311 36.8639
0.0005 7.0873 7.4014 8.2961 9.6586 11.5982 14.0941 15.0888 15.4544
0.001013 7.0506 7.3311 8.0959 9.1837 10.5427 11.8942 12.2544 12.3372
0.001540 7.0139 7.2626 79132 8.7896 9.7797 10.5990 10.7619 10.7882
0.002081 6.9773 7.1957 7.7454 8.4540 9.1900 9.7135 9.7938 9.8020
0.002637 6.9406 7.1302 7.5900 8.1623 8.7136 9.0559 9.0958 9.0967
0.003799 6.8672 7.0034 7.3100 7.6742 7.9786 8.1222 8.1279 8.1237
0.005033 6.7934 6.8811 7.0622 7.2759 7.4275 7.4740 7.4675 7.4620
0.006350 6.7191 6.7626 6.8391 6.9400 6.9921 6.9868 6.9756 6.9700
0.007762 6.6441 6.6472 6.6354 6.6502 6.6353 6.6014 6.5884 6.5829
0.010087 6.5296 6.4784 6.3579 6.2788 6.2012 6.1463 6.1330 6.1279
0.015768 6.2850 6.1476 5.8728 5.6881 5.5585 5.4947 5.4830 5.4789
0.020731 6.1138 5.9233 5.5814 5.3670 5.2313 5.1713 5.1611 5.1576
0.025493 5.9691 5.7467 5.3709 5.1506 5.0196 4.9649 4.9559 4.9528
0.034419 5.7444 5.4858 5.0884 4.8826 4.7685 4.7238 4.7167 47142
0.051151 5.4369 5.1507 4.7709 4.6207 4.5403 4.5133 4.5078 4.5047

temperature profile at upstream infinity. While the
value of Nu,y is infinite at the entrance for the case
of uniform temperature profile at the entrance, the
local Nusselt number has a finite value at x* =0 in
the present study. The local Nusselt number at
Pe = 1000 is slightly lower than the values for Pe = o
given in Shah and London, and generally lower than
values from Hennecke given in Shah and London for
Pe=1,2, 5,10, 20, 50 and co.

For the case of constant wall heat flux, the extrapo-
lated fully developed incremental heat transfer num-
ber and thermal entrance length for the boundary
conditions of Figs. 3(a) and (b) are presented in
Tables 5 and 6, respectively.

For 1 € Pe < 1000, the following correlations are
provided to approximate the values of N(c0) in Table

5 with the error ranging from 0.32% at Pe = 200 to
5.5% at Pe =2:

Nip(o0) = —0.07918+2.0509/Pe, for 1< Pe< 10
(24)
Nr(o0) = 0.05278+0.7546/Pe, for 10 < Pe < 50
25

Nr(0) = 0.06660+0.1660/ Pe,
for 50 < Pe<1000. (26)

The dimensionless thermal entrance length LY,
presented in Table 5 can be caiculated from the fol-
lowing equation with the deviation ranging from
0.22% at Pe = 1 to 2.4% at Pe = 10:

18
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Fic. 2. Circular duct: Nu,; as a function of x* and Pe for the initial and boundary conditions of
Fig. 3(b).
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Fi1G. 3. Initial and boundary conditions for the case of constant wal! heat flux.

LYy = —0.0005184+0.4686/Pe, for 1< Pe<S5
27

L¥ = 0.0326340.3090/Pe, for S < Pe<20
(28)

L%, = 0.04217+0.1309/ Pe,

for 20 < Pe < 1000. (29)

Ny(o0) and LE 4 in Table 6 can be approximated by
the following correlations with the error ranging from

0.13% at Pe = 200 to 3.4% at Pe = 2 for N, (w0):
Ny(o0) = 0.042640.1855/ Pe, I <Pe<S

(30)

for

Table 5. Circular duct: Ny(co) and LE
for the initial and boundary conditions of

Fig. 3(a)

Pe Nu(0) Lin

1 1.9641 0.4691

2 0.9577 0.2311
5 0.3138 0.09493
10 0.1293 0.06204
20 0.08767 0.04907
50 0.06964 0.04397
100 0.06911 0.04324
200 0.06726 0.04297
1000 0.06656 0.04287

Nu(co) = 0.05675+0.1264/Pe, for 5 < Pe<20
(31
Ny(oo) = 0.06401, for 20 < Pe<50 (32)

Ny(00) = 0.06775—0.1693/ Pe,
for 50 < Pe < 1000 (33)

and from 0.22% at Pe =1 to 1.39% at Pe = 10 for
L

L%, = 0.03120+0.2131/Pe, for 1< Pe<5
(34)

L%, =0.03644+0.1901/Pe, for 5< Pe <20
(35)

Table 6. Circular duct: Ny(oo) and LE
for the initial and boundary conditions of

Fig. 3(b)

Pe Nu(o0) L

I 0.2298 0.2448

2 0.1309 0.1363
5 0.08249 0.07471
{0 0.06796 0.05469
20 0.06401 0.04645
50 0.06402 0.04340
100 0.06674 0.04302
200 0.06699 0.04294

0.06715

0.04290
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L%, = 0.04245+0.07531/Pe,
for 20 < Pe < 1000, (36)

The values of Ny(e0) of 0.06656 and 0.06715 at
Pe = 1000 given in Tables 5 and 6 are about 7.8%
and 7%, respectively, lower than the value of 0.0722
given by the Graetz solution. However, the thermal
entrance lengths of 0.04287 and 0.04290 are very close
to that from the Gratez solution (0.043035).

4. PARALLEL PLATES

4.1. Constant wall temperature results

As in the case of a circular duct, the fully developed
Nusselt number for parallel plates with the constant
wall temperature boundary condition is a strong func-
tion of Pe for low Pe values. This is shown in Table
7 and, for comparison purposes, an additional sol-
ution at Pe = 1.4354 was obtained and the predicted
Nusselt number (7.9635) is in excellent agreement
with 7.964 given in Shah and London.

For parallel plates, the extrapolated Ni{o0) and
LY.+ are given in Tables 8 and 9 for the case of the
constant wall temperature boundary condition.

For 1 < Pe < 1000, the following correlations can
be used to approximate the data in Table 8 with the
error ranging from 0.03% at Pe=1 to 3.0% at
Pe = 50 for N(c0):

Nyi(wo) = —0.0940+2.4333/Pe, for 1< Pe< 10
37
Table 7. Parallel plates: fully developed

Nur as a function of Pe for the initial and
boundary conditions of Fig. 1(a)

Pe Present solution
1 8.0058
1.4354 7.9635
2 7.9164
5 7.7468
10 7.6306
20 7.5692
50 7.5456
100 7.5407
1000 7.5407

Table 8. Parallel plates: Ny(co) and L}
for the initial and boundary condxtmns of

Fig. i(a)
Pe Nr(w) L+
H 2.3388 0.2334
2 1.1251 0.1125
5 0.3884 0.04354
10 0.1518 0.02198
20 0.07561 0.01291
50 0.03385 0.00891
100 0.02723 0.008214
200 0.02316 0.007946
1000 0.02172 0.007939
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Table 9, Parallel plates: Ng(o0) and L} ¢
for the initial and boundary conditions of

Fig. I(b)
Pe Nr(0) Lir
1 0.7711 0.1844
2 0.3768 0.09031
5 0.1424 0.03550
10 0.06687 0.01855
20 0.03903 0.01141
50 0.02491 0.00845
100 0.02311 0.008046
200 0.02220 0.007957
1000 0.02189 0.007944

Nir(co) = 0.003253+1.4794/Pe, for 10< Pe< 50
(38)

Ny(o) = 0.02056 +0.6593/ Pe,
for 50 < Pe< 1000 (39)

and from 0.23% at Pe=1 to 3.8% at Pe = 50 for
Lir

Lk = —0.004930+0.2378/Pe, for 1< Pe<5
40
L% =0.00213+0.2058/Pe, for 5< Pe<20
“n
L1 =0.006783+0.1211/Pe, for 20 < Pe < 100
42)
L+ = 0.007865-+0.0315/Pe,
for 100 < Pe < 1000. (43)

The data in Table 9 can be calculated from the
following equations with a maximum error of 2.7%
for Ny{c0) and 3.2% for L} 1:

Ny(oo) = —0.013340.7836/Pe, for 1< Pe< 10
(44
Ny(o0) = 0.01369+0.5278/Pe, for 10 < Pe< 50
45)
Ni(o0) = 0.02155+0.1644/ Pe,
for 50 < Pe <1000 (46)
Lt = —0.002186+0.1863/Pe, for 1< Pe<5
(47
L¥r = 0.002935+0.1619/Pe, for 5< Pe<20
(48)
LY = 0.00697+0.08746/Pe, for 20 < Pe <100
49
L+ = 0.01143 4 0.0450/ Pe,
for 100 < Pe < 1000. (50)
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Ny (o0) at Pe = 1000 from Tables 8 and 9 are about
7.5% and 6.8%, respectively, lower than the value of
0.02348 given in Shah and London [1] for the case of
a uniform temperature profile at the entrance, and the
thermal entrance lengths of 0.007939 and 0.007944 are
very close to Shah and London’s value of 0.007973.

4.2. Constant wall heat flux results

The fully developed Nusselt number for parallel
plates with the constant wall heat flux boundary con-
dition is 8.2353 and is independent of the Péclet
number. The Nu,, vs x* curves for this thermal
entrance problem with finite fluid axial heat con-
duction have an inflection point, similar to the circular
duct case (see Shah and London [1] and Hsu [9]).
Tables 10 and 11 present the extrapolated fully
developed incremental heat transfer number Ny (o0)
and the dimensionless thermal entrance length L}
obtained in the present work.

For 1 < Pe < 1000, the following correlations are
provided to approximate the values of Ny(oc) and
LY 4 in Table 10 with the error ranging from 0.1% at
Pe =50 to 5.3% at Pe = 50 for Ny(o0) and with a
maximum deviation of 4.5% for L¥ -

Nu(o0) = —0.1539+2.8563/Pe. for 1< Pe< 10
(51)
Nu(o0) = 0.01633+1.1664/Pe, for 10 < Pe < 50
(52)

Table 10. Parallel plates: Ny (c0) and L,
for the initial and boundary conditions of

Fig. 3(a)

Pe Nu(oc) Lin

1 2.6963 0.2907

2 1.2911 0.1355
5 0.4038 0.04979
10 0.1343 0.02713
20 0.07112 0.01736
50 0.04187 0.01281
100 0.03789 0.01190
200 0.03514 0.01161

0.03392

0.01150

Table 11. Parallel plates: Ny (oc) and L
for the initial and boundary conditions of

Fig. 3(b)

Pe Ny(o0) L

1 0.2861 0.1511
2 0.1448 0.07794
5 0.07296 0.03631
10 0.04850 0.02229
20 0.03729 0.01555
50 0.03311 0.01232
100 0.03370 0.01173
200 0.03385 0.01156
1000 0.03395 0.01151

T. V. NGUYEN

Ny(o0) = 0.03335+0.4284/ Pe,

for 50 < Pe < 1000 (53)
L¥n = —0.01283+0.3024/Pe, for 1< Pe<S
(54)
Ly = 0.00603+0.2177/Pe, for 5< Pe<?20
(55)
Ly = 0.01091+0.1239/ Pe,
for 20 < Pe < 1000. (56)

The data in Table 11 can be calculated by the fol-
lowing equations with the error ranging from 0.05%
at Pe =200 to 4.6% at Pe = 50 for N,;(o0) and from
0.11% at Pe = 5t0 3.7% at Pe = 50 for L} ,;:

Npy(®) = 0.016044+0.2681/Pe, for 1 < Pe<5
(57)

Nu(o0) = 0.02706+0.2261/Pe, for 5 < Pe < 50
(58)

Nyu(o0) = 0.03406 —0.4500/ Pe,
for 50 < Pe < 1000 (59)

L =0.006977+0.1438/Pe, for 1< Pe<5$
(60)
L%y = 0.008544+0.1386/Pe, for 5 < Pe<20

(61)
L%, = 0.01106+0.08572/ Pe,

for 20 < Pe <1000. (62)

Again N, (c0) values at Pe = 1000 for the case of
constant heat flux are lower (6.8% and 6.7%) than
the value of 0.0364 given in Shah and London [1];
however, the thermal entrance lengths of 0.01150
and 0.01151 are almost identical to their value
(0.01154).

5. CONCLUSION

In the present study, numerical results have been
obtained for laminar heat transfer in the entrance
region of a circular duct and parallel plates. With
the fully developed velocity field, both constant wall
temperature and constant wall heat flux boundary
conditions, with isothermal and adiabatic walls
upstream from the entrance, have been investigated.
The energy equations have been solved more accu-
rately than previously with the use of the Richardson
extrapolation to zero mesh size. Heat transfer results
have been presented in terms of Nusselt number,
incremental heat transfer number and thermal
entrance length. Predicted fully developed Nusselt
numbers compare very well with results in Shah and
London. The correlations presented, which cover the
entire Pe range and all the quantities considered, pro-
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vide the much needed data for use in design of heat
exchangers.

L
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TRANSFERT THERMIQUE LAMINAIRE POUR UN ECOULEMENT EN
ETABLISSEMENT THERMIQUE DANS UN CONDUIT

Résameé—On présente le transfert thermique laminaire dans la région d’entrée d’un tube circulaire et de
plaques paralléles. Le profil de vitesse est pleinement développé et la température est supposée uniforme
en amont. L’équation de I'énergie aux différences finies qui tient compte de la conduction axiale est
résolue par les méthodes ADI et QUICK et les résultats sont extrapolés 4 une taille de maille nulle avec
Pextrapolation de Richardson. Le nombre de Nusselt local, le nombre incrémentiel de transfert et la
longueur d’établissement thermique sont présentés pour Pe entre 1 et 1000, pour une température pariétale
uniforme ou pour un flux thermique pariétal uniforme. Des formules pratiques précises pour effet du
nombre de Peclet sur ces grandeurs sont proposées.

WARMEUBERGANG BEI DER THERMISCH NICHT ENTWICKELTEN LAMINAREN
STROMUNG IN KANALEN

Zusammenfassung—Es wird der Wirmeiibergang bei laminarer Stromung im Einlaufgebiet in einem
Kreisrohr und zwischen parallelen Platten beschrieben. Das Geschwindigkeitsprofil ist vollstindig ausge-
bildet, und es wird angenommen, daB die Temperatur in unendlicher stromaufwartiger Entfernung
gleichformig ist. Die Energiegleichung wird in Form finiter Differenzen formuliert, wobei axiale Wirme-
leitung beriicksichtigt wird. Die Losung erfolgt mittels ADI und QUICK. Die Frgebnisse werden fiir die
Maschengré8e Null mit Hilfe der erweiterten Richardson-Extrapolation bestimmt. Die drtliche Nusselt-
Zahl und die thermische Einlauflinge werden fiir Peclet-Zahlen zwischen 1 und 1000 und fiir konstante
Wandtemperatur sowie konstante Wirmestromdichte an der Wand bestimmt. SchlieBlich wird eine genaue
ingenieurmiBige Korrelation fiir den EinfluB der Peclet-Zahl auf diese GrofBen ermittelt.

JJAMMHAPHBIA TETIJIOIEPEHOC ITPH TEPMUUYECKH PA3BUBAIOMEMCS TEUEHUU
B KAHAJIAX

Amnoramsn—OnucuBacTCs JaMHHApDHBIA TEIUIONEPEHOC HA BOXOJHOM Yy4acTKe KaHaja KpYIJOro
CeYeHHA ¥ DapauielbHBX maacTHH. Ipennonaraercs, yTo Ha GeckOHEMHOCTH NPOQIIL CKOPOCTH ABJ-
SCTCH MIOJIHOCTBIO PA3BHTHIM, & TEMINepaTypa oamoponsa. C HCIONL30BAHEEM HEABHOTO METOJA Tepe-
MeHHLIX Hanpasiennit u Metoaa QUICK petuaerca KOHEUHO-PA3HOCTHOE YPABHEHUE, COOTBETCTBYIOMIEE
YPaBHEHHIO JHEPTHH C YHETOM AKCHAILHOH TENIONPOBOAHOCTH, H ANK NOJYYEHMBIX PE3yJIbTATOB HCNO-
Jp3yeTcs MOmMGHUAPOBaHHas IKCTPANOIAUMS Puwapacona. TIpHBOARTCH NoKaNbHLIE XApAKTEPHCTHKH
TEIUIONEPEHOCA H VTHHA BXOQHOTO TEIUIOBOIO YYacTKa Ul 3HaYeHHH Pe, H3MEHSIOUMXCS B HHTEPBANE
1-1000 B ciryyae rpaHHYHBIX YCJIOBHI ¢ NOCTOAHHOM TEMIIEPATYpOif CTEHKH M NOCTOSHHBIM TEILIOBBHIM
notoxoM Ha Heil. [lonydeHB TOYHLIE COOTHOLUEHHS, O3BOJAIOLIAE OLCHATH BiMAHMe uncia Ilexne Ha
HCCNIERYyEMbie BIMYHHDL.



