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Australia 

Abstract-Laminar heat transfer in the entrance region of a circular duct and parallel plates is presented. 
The velocity profile is fully developed and the iemperature is assumed to be uniform at upstream infinity. 
The finite difference equation for the energy equation, amounting for axial conduction, was solved by AD1 
and QUICK methods and the results extrapolated to zero mesh size with extended Richardson extra- 
polation. The local Nusselt number, incremental heat transfer number and thermal entrance length are 
presented for Pe between 1 and 1000; and for constant wall temperature and constant wall heat Aux 
boundary conditions. Accurate engineering correlations for the P&et number effect on these quantities 

were also obtained. 

1. INTRODUCTION 

THE ANALYSIS of heat transfer in the entrance region 
in ducts has been widely considered, and an extensive 
compilation of such solutions is provided by Shah and 
tondon 111. In most of these studies, it was assumed 
that the velocity and temperature distributions at the 
entrance to the passage are uniform and the axial 
diffusion of both momentum and heat is negligible. 
In fact, if the pressure gradients and heat transfer 
rates were required near the entrance region, realistic 
boundary conditions of uniform flow far upstream 
must be used. The effect of the entrance region is to 
increase the pressure drop and the heat transfer rate. 
The additional pressure drop is caused by the momen- 
tum change and the accumulated increment in wall 
shear between developing flow and developed flow. 
This increment in the pressure drop over and above the 
fully developed value is designated as the incremental 
pressure drop number K and the increment in the heat 
transfer rate as the increment heat transfer number 
N. Accurate knowledge of K and N for ducts is of 
considerable practical as well as theoretical interest, 
especially the fully developed ffow values, K(W), 
N,(cxJ) and NH(~). The effect of axial diffusion on 
fluid flow and heat transfer is negli~ble only at very 
high Reynolds and P&let numbers, because of the 
rapid change in axial velocity and temperature gradi- 
ents near the entrance. At low Re and Pe, Kis a strong 
function of Re and I& and A$, are strong functions of 
Pe. 

This paper presents the results of a numerical study 
of the developed flow, laminar forced convection in 
the entrance region of a circular duct and parallel 
plates. The ff ow is fully developed and the temperature 
is assumed to be uniform at upstream infinity. Both 
constant axiai wall temperature and constant and 
equal wall heat flux conditions along the ducts are 

studied. In most previous numerical solutions, the 
approximations of various parameters, such as the 
incremental pressure drop number K(W) and the 
incremental heat transfer number N(W), deteriorate 
at the end of the hydrodynamic or thermal entrance. 
In the present work, discretization error is reduced by 
extrapolating three mesh sizes to zero mesh size using 
the extended Richardson extrapolation. In addition, 
the QUICK scheme, which is well suited to the prob- 
lem, is used with theoreticalIy motivated stretched 
coordinates to improve accuracy and efficiency. 
The numerical results obtained are in excellent agree- 
ment with previous solutions, Nguyen and Maclaine- 
cross [2,3] and Nguyen [4]. The local Nusselt number, 
incremental heat transfer number and thermal 
entrance length are presented for Pe ranging from 1 
to 1000. Correlation equations are also given for ail 
of the quantities considered. 

2. THE EQUATIONS AND THEIR SOLUTION 

This paper is concerned with the laminar heat trans- 
fer of a Newtonian constant property fluid at the 
entrance region of a circular duct and parallel plates 
of infinite extent. Viscous dissipation is neglected. The 
velocity profile is fully developed and the temperature 
profile is uniform at upstream infinity. The wall in 
the upstream region (X < 0) is assumed to be either 
insulated or at constant temperature. In the down- 
stream region (x 3 0) the wall is subject to the bound- 
ary condition of uniform wall temperature or uniform 
wail heat flux. 

The dimensionless energy equation for steady lami- 
nar flow in a circular duct is given by 
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NOMENCLATURE 

0, hydraulic diameter .I‘ dimensionless coordinate normal to the 

&?I thermal entrance length plates. 
n number of interior mesh points 

N incremental heat transfer number 

N( 3~’ 

NM 

PC 
Pr 
r 
R 
R? 
T 

T, 
TX 
IA 
U I 
.\’ 
.P 

) fully developed incremental heat 

transfer number 
Nusselt number 

P&let number 
Prandtl number 
dimensionless radial coordinate 

radius of circular duct 
Reynolds number, D, Cl .,/v 
temperature 
wall temperature 
upstream temperature 
dimensionless axial velocity 
upstream velocity 
dimensionless axial coordinate 
dimensionless axial coordinate for the 
thermal problem, .x/2Pc 
dimensionless transformed axial 

coordinate 

Greek symbols 
s( thermal diffusivity 
Al time step 

c convergence factor 
0 dimensionless temperature 
1’ kinetic viscosity. 

Subscripts 

bc thermal boundary condition 

H constant heat flux boundary condition 

m mean 
t transformed 
T constant temperature boundary 

condition 
Y local 

I/J free stream value. 

in which 0 = (T-T,)/(T,-T,), Pe = RePr, Re = 
U, D,/v and Pr = v/x. Here R, v and CI denote re- 
spectively the radius of the circular duct, the kinetic 
viscosity and the thermal diffusivity. 

For parallel plates, the energy equation is as 
follows : 

The streamwise coordinate and partial differential 
equations (1) and (2) were transformed both upstream 
and downstream of the entrance using a function 

related to the downstream decay [5]. The transformed 
coordinate x, is dimensionless and - 1 < .I-, < I. It 
may be calculated from the dimensionless coordinate 
.Y in equations (1) and (2) using 

(1 -exp (- lxlj(O.089275Pe)))x 
_Y, = 

14 
(3) 

The transformed coordinates give a more equal 
change in dependent variables over each grid element 
and points at downstream infinity. The number of 
grid elements required for a given discretization error 
is greatly reduced at the expense of slightly more com- 
putation per grid element. 

Finite difference equations were derived from the 
transformed non-linear partial differential equations. 
Quadratic upstream interpolation for convective kin- 
ematics (QUICK) [6] was used for the convective 
lerms to give stability with a discretization error of the 
order of the square of the mesh size. The alternating 
direction implicit (ADI) iterative method was used to 

solve the non-linear finite difference equations. Con- 
vergence was measured by calculating 

where n is the number of interior mesh points, U,,,, is 
the maximum magnitude of 0 and At is the time step. 
Iteration was repeated until E(, were all less than 10 ” 
so that the error in solving the finite difference cqua- 

tions was negligible and independent of grid size. 
The dimensionless groups used in the present work 

are defined as follows : 

the local Nusselt number 

au 
Nu, = ~ 0 i & ,m,, 

‘(& - 0,,) for circular duct (5) 

for parallel plates (6) 

where O,, is the fluid bulk mean temperature 

the mean Nusselt number 

the incremental heat transfer number 

Nhc = (Nu,,,,~~ - NM,,).\-*. (8) 

The suffix bc represents the associated thermal bound- 
ary conditions (T or H) and Nu,, is the Nusselt num- 
ber for fully developed flow. The mean Nusselt num- 
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ber Nu, is obtained by the integral in equation (7) 
for values of x up to x = co. The fully developed 
incremental heat transfer number N(W) is then taken 
as the asymptotic value which N,, calculated by equa- 
tion (8), converges to four significant figures. 

Discretization error is the difference between the 
exact solution of the finite difference equations and 
the exact solution of the consistent partial differential 
equations. For the finite difference equations used 
here this is of the order of the grid size squared. It 
may be reduced to fourth order by extrapolation to 
zero grid size of the finite difference equation solutions 
for three different grid sizes. Each grid is solved with 
the same parameters and boundary conditions. The 
threeg~ds~ho~nwere11x81,21x161and41x321 
mesh points in the r or y and x direction respectively 
making each grid size half its predecessor. The fol- 
lowing extrapolation formula was calculated from the 
general expression in Maclaine-cross [5] : 

A = A3_ (A3-Al)--12(A3---2) ._. 
21 (9) 

where A3 is the value at the smallest grid size, etc. 
It should be noted that the above formula is valid 
only for grids formed by successive mesh doubling, 
for numerical methods which are unifo~ly second- 
order accurate, and for very tight iterative conver- 
gence. Other details of the solution method are dis- 
cussed elsewhere [7]. 

3. CIRCULAR DUCT 

Equations (1) and (2) have been solved for the 
following Pe values: 1, 2, 5, 10, 20, 50, 100, 200 and 
1000. It should be emphasized that Re is based on the 
hydraulic diameter & = 2R. 

3.1. CQ~ta~t wall temperature rends 
For the case of negligible axial heat conduction, the 

fully developed Nusselt number for a circular duct 
with the constant wall temperature boundary con- 
dition is 3.6568. However, when the effect of axial heat 
conduction in the fluid is included, the fully developed 
Nusselt number Nz+ is a strong function of the Peelet 
number for low P&let number iIows as shown in Table 
1, where the results from the present numerical work 

Table 1. Circular duct : fully developed N% 
as a function of Pe for the initial and 

boundary condition of Fig. 1 (a) 

Pe Present solution Ref. it] 

1 4.0280 4.030 
2 3.9226 3.925 
5 3.7673 3.769 

10 3.6973 3.697 
20 3.6675 3.670 
50 3.6586 3.660 

100 3.6572 - 
200 3.6569 - 

1000 3.6568 3.6568 
._._~ 

and Shah and London [l] are listed. The present work 
is seen to be in excellent agreement with the values 
given in Shah and London. 

For the case of a circular duct with boundary con- 
ditions of Fig. l(a), the extrapolated values of the 
fully developed incremental heat transfer number 
NT(~) and the dimensionless thermal entrance length 
L&r, defined by Nu~,~(L~,,~) = l.OSlrJu,, are given in 
Table 2. 

The following correlations can be used to approxi- 
mate N&co) in Table 2 with the error ranging from 
0.35% at Pe = 100 to 4.89% at Pe = 5 : 

NT(m) = -0.1577+2.5166/Pe, for 1 < Pe< 5 

(101 

NT(co) = 0.00186+ 1.8024/Pe, for 5 G Pe < 20 

(11) 

NT(w) = 0.03596+ l.l523/Pe, for 20 C Pe < 100 

(12) 

i&(Go) = 0.04539+0.3515/Pe, 

for 100 < Pe < 1000. (13) 

Equations (14)-(16) correlate the values of .Z_.&,. 
given in Table 2 with the deviation ranging from 0.2% 
atPe= fto4.1%atPe= 10 

LXJ = -0.003079+0.4663/Pe, for 1 G Pe < 5 

(14) 

L,,*,,T = 0.02020+0.3550/Pe, for 5 G Pe < 20 

(151 

L& = 0.03258+0.1295JPe, 

for 20 < Pe 6 1000. (16) 

Table 3 tabulates the extrapolated values of N&co) 
and L&for all Pe for a circular duct with an adiabatic 
wall upst~m from the entrance (Fig. 1 (b)). The fol- 
lowing equations are proposed for NT(co) in Table 3 
to cover the complete Pe range with the error ranging 
from 0.08% at Pe = 100 to 3.8% at Pe = 5 : 

JM~) - -0.03044+0.9061/Pe, for 1 < Pe Q 5 

(17) 

N,(co) = O.O2667~O.#~/Pe, for 5 G Pe < 20 

(18) 

N,(m) - 0.04301+0.3472/Pe, for 20 < Pe < 100 

(19) 

N&co) = 0.~539iO.O76~jPe, 

for 100 < Pe G 1000. (20) 

For the thermal entrance length in Table 3, the fol- 
lowing correlations are given to approximate L&T to 
within 4.3% : 

L& = 0.~0501+0.3829jPe, for 1 ,< Pe < 5 

(21) 



1736 T. V. NGUYEN 

/ 
T,,, = T, 

A X / 
Tw > T, 

I - 

,m=o X / 
7’, > 7-w 

i i v I - 

FIG. 1. Initial and boundary conditions for the case of constant wall temperature. 

J%.T = 0.02154+0.2821/Pe, for 5 < Pe < 20 

(22) 

L&r = 0.03282 +O.O7852/Pe, 

for 20 < Pe 4 1000. (23) 

The values of Nr(co) of 0.04596 and 0.04644 at 
Pe = 1000 in the present study (uniform temperature 
profile at upstream infinity) are about 8% and 6.9% 
lower than the value (0.04990) given by the Graetz 
solution (uniform temperature profile at entrance). 
However, the thermal entrance lengths of 0.03330 and 
0.03333 are very close to that from the Graetz solution 

(0.03346). 

Table 2. Circular duct: NT(~) and L& 
for the initial and boundary conditions of 

Fig. I(a) 

Table 3. Circular duct: NT(~) and L& 
for the initial and boundary conditions of 

Fig. I(b) 

PC? NT(=) L:h.T PC2 N,(~) I* -'itI.7 

1 2.3696 0.4643 1 0.8793 0.3843 

2 1.0722 0.2273 2 0.4130 0.1894 

5 0.3634 0.09193 5 0.1568 0.07865 

10 0.1789 0.05352 10 0.08895 0.04768 

20 0.094 11 0.03940 20 0.06058 0.03702 

50 0.05688 0.03437 50 0.04910 0.03375 

100 0.04908 0.03357 100 0.047 12 0.03340 

200 0.04676 0.03337 200 0.0466 1 0.03335 

1000 0.04596 0.03330 1000 0.04644 0.03333 

3.2. Constant wall heat&x results 

In the case of constant wall heat flux, the axial heat 
conduction within the fluid is constant and therefore 
does not affect the Nusselt number. The fully 

developed, asymptotic local Nusselt number in this 
case is 4.3636 and is independent of the P&let number. 
Table 4 presents the extrapolated local Nusselt num- 
ber as a function of x* for the whole range of Pr 

considered here. As seen from Fig. 2, which presents 
graphically the results from Table 4, the Nu, h vs .Y* 
curves have an inflection point at x* = 0.0077, i.e. 
NM,,, increases with decreasing Pe. This phenomenon 
has also been found by previous workers, e.g. Hen- 
necke [8] and Hsu [9], for the case of uniform entrance 
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Table 4. Circular duct : Nux,” as a function of x* and Pe 

x* Pe = I 2 5 10 20 50 100 1000 

0 7.1240 7.4735 8.5176 10.2507 13.2274 19.4221 25.331 I 36.8639 
0.0005 7.0873 7.4014 8.2961 9.6586 11.5982 14.0941 15.0888 15.4544 
0.001013 7.0506 7.3311 8.0959 9.1837 10.5427 11.8942 12.2544 12.3372 
0.001540 7.0139 7.2626 7.9132 8.7896 9.7797 10.5990 10.7619 10.7882 
0.00208 1 4.9773 7.1957 7.7454 8.4540 9.1900 9.7135 9.7938 9.8020 
0.002637 6.9406 7.1302 7.5900 8.1623 8.7136 9.0559 9.0958 9.0967 
0.003799 6.8672 7.0034 7.3100 7.6742 7.9786 8.1222 8.1279 8.1237 
0.005033 6.7934 6.8811 7.0622 7.2759 7.4275 7.4740 7.4675 7.4620 
0.006350 6.7191 6.7626 6.8391 6.9400 6.9921 6.9868 6.9756 6.9700 
0.007762 6.6441 6.6472 6.6354 6.6502 6.6353 6.6014 6.5884 6.5829 
0.010087 6.5296 6.4784 6.3579 6.2788 6.2012 6.1463 6.1330 6.1279 
0.015768 6.2890 6.1476 5.8728 5.6881 5.5585 5.4947 5.4830 5.4789 
0.02073 1 6.1138 5.9233 5.5814 5.3670 5.2313 5.1713 5.1611 5.1576 
0.025493 5.9691 5.7467 5.3709 5.1506 5.0196 4.9649 4.9559 4.9528 
0.034419 5.7444 5.4858 5.0884 4.8826 4.7685 4.7238 4.7167 4.7142 
0.051151 5.4369 5.1507 4.1709 4.6207 4.5403 4.5133 4.5078 4.5047 

temperature profile at upstream infinity. While the 
value of Nu,,~ is infinite at the entrance for the case 
of uniform temperature profile at the entrance, the 
local Nusselt number has a finite value at x* = 0 in 
the present study. The local Nusselt number at 
Pe = 1000 is siightly lower than the values for Pe = co 
given in Shah and London, and generally lower than 
values from Hennecke given in Shah and London for 
Pe = 1,2,5,10,20, 50 and co. 

For the case of constant wall heat flux, the extrapo- 
lated fully developed incremental heat transfer num- 
ber and thermal entrance length for the boundary 
conditions of Figs. 3(a) and (b) are presented in 
Tables 5 and 6, respectively. 

For 1 < Pe < 1000, the following correlations are 
provided to approximate the values of A$( co) in Table 

5 with the error ranging from 0.32% at Pe = 200 to 
5.5% at Pe = 2 : 

NT(~) = -0.07918+2.0509/Pe, for 1 < Pe < 10 

(24) 

NT(~) = 0.05278+0.7546JPe, for 10 < Pe < 50 

(25) 

N,(co) = 0.06660+0.166O/Pe, 

for 50 < Pe < 1000. (26) 

The dimensionless thermal entrance length I&, 
presented in Table 5 can be calculated from the fol- 
lowing equation with the deviation ranging from 
0.22% at Pe = 1 to 2.4% at Pe = 10: 

FIG. 2. Circular duct: Nu~,~ as a function of x* and Pe for the initial and boundary conditions of 
Fig. 3(b). 
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FIG. 3. Initial and boundary conditions for the case of constant wall heat flux 

Gl.H = -0.000518+0.4686/Pe, for 1 < Pe < 5 

(27) 

J&i = 0.03263+0.3090/Pe, for 5 < Pe < 20 

(28) 

L& = 0.04217+0.1309/Pe, 

for 20 Q Pe < 1000. (29) 

NH(a) and LkH in Table 6 can be approximated by 
the following correlations with the error ranging from 

0.13% at Pe = 200 to 3.4% at Pe = 2 for NH(m) : 

N,,(m) = 0.0426+0.1855/Pe, for 1 < Pe d 5 

(30) 

Table 5. Circular duct: NH(m) and L&i 
for the initial and boundary conditions of 

Fig. 3(a) 
__~~~~~ ~~. ~~~~ ~~~~~~ ~~~- 

Pe NH(~) L:h.H 

1 1.9641 0.4691 
2 0.9577 0.2311 
5 0.3138 0.09493 

IO 0.1293 0.06204 
20 0.08767 0.04907 
50 0.06964 0.04397 

100 0.0691 I 0.04324 
200 0.06726 0.04297 

1000 0.06656 0.04287 

NH(~) = 0.05675+0.1264/Pe, for 5 < Pe < 20 

(31) 

NH(~) = 0.06401, for 20 < Pe < 50 (32) 

NH(m) = 0.06775-O.l693/Pe, 

for 50 < Pr < 1000 (33) 

and from 0.22% at Pr = 1 to I .39% at Pe = 10 for 

GLH 

L,*h.t, = 0.03120+0.2131/Pe, for I < Pe ,( 5 

(34) 

.G.H = 0.03644+0.19Ol/Pe, for 5 < Pe d 20 

(35) 

Table 6. Circular duct: N,,(m) and L:h,,, 
for the initial and boundary conditions of 

Fig. 3(b) 

PC N,,(ao) Cf.,, 

I 0.2298 0.2448 
2 0.1309 0.1363 
5 0.08249 0.07471 

IO 0.06796 0.05469 
20 0.0640 1 0.04645 
50 0.06402 0.04340 

100 0.06674 0.04302 
200 0.06699 0.04294 

1000 0.067 15 0.04290 
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L&x = 0.~245+0.0753l~Pe, Table 9. ParalU plates: NT(~) and I?& 
for the initial and boundary conditions of 

for 20 < Pe G 1000. (36) Fig. l(b) 

The values of Nn(co) of 0.06656 and 0.06715 at 
Pe = 1000 given in Tables 5 and 6 are about 7.8% 
and 7%, respectively, lower than the value of 0.0722 
given by the Graetz solution. However, the thermal 
entrance lengths of 0.04287 and 0.04290 are very close 
to that from the Gratez solution (0.04305). 

4. PARALLEL PLATES 

4.1 r Constant wail ~~~~era~ur~ results 
As in the case of a circular duct, the fully developed 

Nusselt number for parallel plates with the constant 
wall temperature boundary condition is a strong func- 
tion of Pe for low Pe values. This is shown in Table 
7 and, for comparison purposes, an additional sol- 
ution at Pe = 1.4354 was obtained and the predicted 
Nusselt number (7.9635) is in excellent agreement 
with 7.964 given in Shah and London. 

For parallel plates, the extrapolated &.(co) and 
I& are given in Tables 8 and 9 for the case of the 
constant wall temperature boundary condition. 

For 1 < Pe < 1000, the following correlations can 
be used to approximate the data in Table 8 with the 
error ranging from 0.03% at Pe = 1 to 3.0% at 
Pe = 50 for NT(~) : 

N,(co) = -0.0940-+2.4333/Pe, for 1 < Pe < 10 

(37) 

Table 7. Parallel plates: fully developed 
Iv& as a function of Pe for the initial and 

boundary conditions of Fig. 1 (a) 

Pe 

I 
I .4354 
2 
5 

IO 
20 
50 

100 
1000 

Present sohttion 

8.0058 
7.9635 
7.9164 
7.7468 
7.6306 
7.5692 
7.5456 
7.5407 
7.5407 

-“..-_ 

Table 8. Parallel plates: N,(co) and L& 
for the initial and boundary conditions of 

Fig. l(a) 

Pe 

1 
2 
5 

10 
20 
50 

100 
200 

1000 

NT(~) 
-- 

2.3388 
I.1251 
0.3884 
0.1518 
0.07561 
0.03385 
0.02723 
0.02316 
0.02172 

Li%,T 

0.2334 
0.1125 
0.04354 
0.02198 
0.01291 
0.00891 
0.008214 
0.007946 
0.007939 

Pe 

1 
2 
5 

IO 

::: 
100 
200 

1000 

NT(~) 

0.7711 0.1844 
0.3768 0.0903 1 
0.1424 0.03550 
0.06687 0.01855 
0.03903 0.01141 
0.0249 1 0.00845 
0.023 11 0.008046 
0.02220 0.007957 
0.02189 0.007944 

Nr(co) = 0.003253-t- 1.4794/Pe, for 10 f Pe < 50 

(38) 

&(co) = 0.02056+0.6593/Pe, 

for 50 < Pe < 1000 (39) 

and from 0.23% at Pe = 1 to 3.8% at Pe = 50 for 

Gl,T 

G&r = -0.0~93~+0.2378lPe, for 1 < Pe < 5 

(401 

L5;,T = 0.002~3+0.2058~Pe, for 5 < Pe < 20 

(41) 

Gt,T = 0.006783+0.121 l/Pe, for 20 < Pe sg 100 

(42) 

L&I- = 0.~7865 + 0.031 SfPe, 

for 100 < Pe $1000. (43) 

The data in Table 9 can be calculated from the 
following equations with a maximum error of 2.7% 
for &(co) and 3.2% for Lb,= : 

&(co) = -0.0133+0.7836/Pe, for 1 < Pe < 10 

(44) 

j&(03) = 0.01369+0.5278/Pe, for 10 g Pe < 50 

(45) 

Nr(cO) = 0.02155~O.l~/Pe, 

for 50 < Pe G 1000 (46) 

GtI,l = -0.~2186+O.i863/Pe, for I ,( Pe < 5 

(47) 

&,T = 0.002935+0.1619/Pe, for 5 < Pe < 20 

(48) 

L,*h.T = 0.00697+0.08746/Pe, for 20 6 Pe 9 100 

(49) 

L&T = 0.01 l43+0.~5O/Pe, 

for 100 < Pe 6 1000. (SO) 
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NT(~) at Pe = 1000 from Tables 8 and 9 are about 
7.5% and 6.8%, respectively, lower than the value of 
0.02348 given in Shah and London [I] for the case of 
a uniform temperature profile at the entrance. and the 
thermal entrance lengths of 0.007939 and 0.007944 arc 

very close to Shah and London’s value of 0.007973. 

4.2. Constant wall heat flux results 

The fully developed Nusselt number for parallel 
plates with the constant wall heat flux boundary con- 
dition is 8.2353 and is independent of the P&let 
number. The Nu,,, vs .Y* curves for this thermal 
entrance problem with finite fluid axial heat con- 

duction have an inflection point, similar to the circular 
duct case (see Shah and London [l] and Hsu [9]). 

Tables 10 and 11 present the extrapolated fully 

developed incremental heat transfer number N, (co) 
and the dimensionless thermal entrance length f&, 
obtained in the present work. 

For 1 < Pe ,< 1000, the following correlations are 
provided to approximate the values of N+,(a) and 
L&, in Table 10 with the error ranging from 0.1% at 
Pe = 50 to 5.3% at Pe = 50 for NH(~) and with a 
maximum deviation of 4.5% for Z&, : 

NH(m) = -0.1539+2.8563/Pe, for 1 d Pe ,< 10 

(51) 

Nn(co) = 0.01633+ l.l664/Pe, for 10 < Pe < 50 

(52) 

Table 10. Parallel plates: NH(a) and L:h,,l 
for the initial and boundary conditions of 

Fig. 3(a) 

Pe 

1 
? 

10 

20 
50 

100 
200 

1000 

2.6963 
1.2911 
0.4038 
0.1343 
0.07112 
0.04187 
0.03789 
0.03514 
0.03392 

L:h.H 

0.2907 
0.1355 
0.04979 
0.02713 
0.01736 
0.01281 
0.01190 
0.01161 
0.01150 

Table 11. Parallel plates : N,,(m) and L:h,F, 
for the initial and boundary conditions of 

Fig. 3(b) 

PI? N,,(m) 

I 0.2861 
2 0.1448 
5 0.07296 

10 0.04850 
20 0.03729 
50 0.03311 

100 0.03370 
200 0.03385 

1000 0.03395 

G.,, 

0.1511 
0.07794 
0.0363 1 
0.02229 
0.01555 
0.01232 
0.01173 
0.01156 
0.01151 

NH(o) = 0.03335+0.4284/Pe, 

for 50 d Pe Q 1000 (53) 

Gl.H = -0.01283+0.3024/Pc, for 1 < Pe < 5 

(54) 

GIl.n = 0.00603+0.2177/Pe, for 5 < Pe < 20 

(55) 

L&H = 0.01091 +O.l239/Pe, 

for 20 6 Pe < 1000. (56) 

The data in Table 11 can be calculated by the fol- 
lowing equations with the error ranging from 0.05% 

at Pe = 200 to 4.6% at Pe = 50 for Nn(c0) and from 
0.11% at Pe = 5 to 3.7% at Pe = 50 for L$,+, : 

N,,(W) = 0.01604+0.2681/Pe, for 1 < Pe < 5 

(57) 

NH(~) = 0.02706+0.2261/Pe, for 5 < Pe < 50 

(58) 

NH(~) = 0.03406-0.4500/Pe, 

for 50 < Pe < 1000 (59) 

G,H = 0.006977+0.1438/Pe, for 1 < Pe < 5 

(60) 

Lb,,, = 0.00854+0.1386/Pe. for 5 G Pe < 20 

(61) 

G,, = 0.01106+0.08572/Pe, 

for 20 < Pe < 1000. (62) 

Again NH(~) values at Pe = 1000 for the case of 
constant heat flux are lower (6.8% and 6.7%) than 
the value of 0.0364 given in Shah and London [l] ; 
however, the thermal entrance lengths of 0.01150 
and 0.01151 are almost identical to their value 
(0.01154). 

5. CONCLUSION 

In the present study, numerical results have been 
obtained for laminar heat transfer in the entrance 
region of a circular duct and parallel plates. With 
the fully developed velocity field, both constant wall 
temperature and constant wall heat flux boundary 
conditions, with isothermal and adiabatic walls 
upstream from the entrance, have been investigated. 
The energy equations have been solved more accu- 
rately than previously with the use of the Richardson 
extrapolation to zero mesh size. Heat transfer results 
have been presented in terms of Nusselt number, 
incremental heat transfer number and thermal 
entrance length. Predicted fully developed Nusselt 
numbers compare very well with results in Shah and 
London. The correlations presented, which cover the 
entire Pe range and all the quantities considered, pro- 
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vide the much needed data for use in design of heat 5. 
exchangers. 
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TRANSFERT THERMIQUE LAMINAIRE POUR UN ECOULEMENT EN 
ETABLISSEMENT THERMIQUE DANS UN CONDUIT 

K&sum&-On prksente le transfert thermique laminaire dans la r&ion d’entrke d’un tube circulaire et de 
plaques paraIl&s. Le pro@ de vitesse est pleinement d&elopg et la temp&ature est supp&e uniforme 
en amont. L’Bquation de l%nergie aux diff&ences finies qui tient compte de Ia conduction axiale est 
r&olue par les mhthodes AD1 et QUICK et les &&tats sont extrapolb & une taille de maiIIe nulle avec 
I’extrapolation de Richardson. Le nombre de Nusseit local, le nombre incrkmentiel de transfert et Ia 
longueur d’Ctablissement thermique sont p&sent&s pour Pe entre I et 1000, pour une tempkrature pari&ale 
uniforme ou pour un flux thermique pari6tal uniforme. Des formules pratiques p&&es pour I’effet du 

nombre de Peclet sur ces grandeurs sont propostes. 

WARMEOBERGANG BE1 DER THERMISCH NICHT ENTWICKELTEN LAMINAREN 
STRC)MUNG IN KANALEN 

Z~f~~g-~ wird der W~~e~~rgang bei laminarer Str~mung im Ein~aufgebiet in einem 
Kreisrohr und zwischen parallelen Platten beschrieben. Das Gesch~n~gkeitspro~l ist vollst~ndig ausge- 
bildet, und es wird angenommen, daD die Temperatur in unendlicher stroma~w~~iger Entfemung 
gleichfdrmig ist. Die Energiegleichung wird in Form finiter Differenzen formuliert, wobei axiale Wlrme- 
Ieitung beriicksichtigt wird. Die Lijsung erfolgt mittds AD1 und QUICK. Die Ergebnisse werden fiir die 
MaschengriiBe Null mit Hilfe der erweiterten Richardson-Extrapolation bestimmt. Die iirtliche Nusselt- 
Zahl und die thermische EinlauflLnge werden ffir Peclet-Zahlen zwischen 1 und 1000 und fiir konstante 
Wandtemperatur sowie konstante Wlrmestromdichte an der Wand bestimmt. SchlieBlich wird eine genaue 

ingenieurmiBige Korrelation ffir den EinfluD der Peclet-Zahl auf diese GrijDen ermittelt. 

JIAMHHAPHbIm TEI-IJIOI-IEPEHOC I’IPM TEPMllgECKM PA3BWBAIOTC(EMCIII TEgEHklkl 
B KAHAJIAX 

~~H~~~~ naMnHap~ Te~one~H~ na eoxox~io~ yqaae gaEa.na apyrnoro 

wrefsfs H ~a~~e~H~x nnacTwi. ~~~o~ara~~~,~~o xa 6ecitoHewwra rqo&izb c~opocrH aan- 

~le~cn non~ocrb~) pa3w~bw,a TeMnepaw 0rtHoporuIa.C Hcuonb3o~HeM HeanHoro MeToga nepe- 

hfenzibxx Hanpaane&i H hfe-roaa QUICK pemamcn KonesHo-pa3Hocrxioe ypamiemie, coo~~e~cr~yrorrree 
yfXlBHWHlO 3HeprSiB C y'leTOM NWEAJIbHOli TelIJlOlIpOBO.LUiOCTH,Si&II~ IlOJIyYeHHbZX pe3yJlbTaTOBHCnO- 

JIb3yeTCS MO~&iUHpOBaHHBP 3KCT&WIOJMuHJl hlapL&OHa. npHBOnaTeS JlOKaJ'lbHbIe XapaKTepHCTHKH 

EnnonepeHoca H anHHa BXO~HOrO Tel'lJlOBOrO yvacTKa &rln 3HareHHi-i Pe,H3hiemwqHxcfl B AHTepBane 

l-1000 B cnyvae rpawiwib~x ycnorulk c nocroaHHoii TeMnepaTypoi cretnzi N ~~~TORHH~IM ~ennonbt~ 

NOTOKOM Ha Hei% l-loJIylreabl TOwIble coo~ouIe~a,no3Bonn~ILuIe OUeHHTb BJninnHe qHcna ITeKne Ha 


